Error estimates for two-dimensional cross approximation
نویسندگان
چکیده
منابع مشابه
Singularities and Error Estimates in Non-Conforming Approximation of Two-Dimensional Di usion Problem
The solution of a two dimensional di usion problem with discontinuous coefcients is analyzed on a particular two-regions domain. The solution is shown to contain a singular part, and the particular behavior is quantitatively evaluated. It is well kown that the degree of regularity of the solution for such problem determines the accuracy of the numerical techniques used to approximate the soluti...
متن کاملEstimates of Approximation Error by Legendre Wavelet
This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces [ ] ( ) C 0,1 α and [ ] ( ) N C 0,1 +α by norms 2 ⋅ and 1 ⋅ , respectively. These estimate results are valuable to solve integral-differential equations by Legendre wavelet method.
متن کاملSome Error Estimates for the Numerical Approximation of Surface Integrals
Recently, the first author introduced a new approach to the numerical quadrature of surface integrals in the context of boundary element methods. It is assumed that a global parametrization m of the surface is only indirectly given (e.g., via an iterative method) and that m is not accessible analytically. Of particular interest are parametrizations which are based on automatic triangulations of...
متن کاملSharp Error Estimates for Interpolatory Approximation on Convex Polytopes
Let P be a convex polytope in the d-dimensional Euclidean space. We consider an interpolation of a function f at the vertices of P and compare it with the interpolation of f and its derivative at a fixed point y ∈ P. The two methods may be seen as multivariate analogues of an interpolation by secants and tangents, respectively. For twice continuously differentiable functions, we establish sharp...
متن کاملError Estimates for Thin Plate Spline Approximation in the Disc
This paper is concerned with approximation properties of linear combinations of scattered translates of the thin-plate spline radial basis function | · | log | · | where the translates are taken in the unit disc D in R. We show that the Lp approximation order for this kind of approximation is 2+1/p (for sufficiently smooth functions), which matches Johnson’s upper bound and, thus, gives the sat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2010
ISSN: 0021-9045
DOI: 10.1016/j.jat.2010.04.012